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Chapter 6

Gravitational and Central 
Force



6.1 Newton's Law of Universal Gravitation:

(1)

(2)

(3)

((Every particle in the universe attracts every 

other particle with a force whose magnitude is 

proportional to the product of the masses of the 

two particles and inversely proportional to the 

square of the distance between them. The 

direction of the force lies along the straight line 

connecting the two particles. ))

𝐹𝐹𝑖𝑖𝑖𝑖 = 𝐺𝐺 𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗

𝑟𝑟𝑖𝑖𝑗𝑗
2 (

𝑟𝑟𝑖𝑖𝑗𝑗
𝑟𝑟𝑖𝑖𝑗𝑗

)

𝐺𝐺 = (6.67259 ± 0.00085 × 10−11 𝑁𝑁𝑚𝑚2

𝑘𝑘𝑔𝑔2



• 𝐹𝐹𝑖𝑖𝑖𝑖 is the force on particle 𝑖𝑖 of mass mi exerted by 

particle 𝑗𝑗 of mass m𝑗𝑗. 

𝐹𝐹𝑖𝑖𝑖𝑖 = 𝐺𝐺 𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗

𝑟𝑟𝑖𝑖𝑗𝑗
2 (

𝑟𝑟𝑖𝑖𝑗𝑗
𝑟𝑟𝑖𝑖𝑗𝑗

)

• The vector 𝑟𝑟𝑖𝑖𝑖𝑖 is the directed line segment running 

from particle i to particle j, 



6.2 Gravitational Force between a Uniform Sphere 
and a Particle:
Consider first a thin uniform shell of mass M and radius R. Let r be the distance from the 
centre O to a test particle P of mass m (Fig. 6.2.1). We assume that r > R. We shall divide 
the shell into circular rings of width  𝑅𝑅 ∆ 𝜃𝜃. Where, as shown in the figure, the angle

Sin 𝜃𝜃≈ 𝜃𝜃 =𝑑𝑑(شریحة)
𝑅𝑅• The angle POQ is denoted by θ, Q being a point on the ring. 

• Where S is the distance PQ (the distance from the 

particle P to the ring) as shown in above Figure.

• we can write the force between a shell and the particle 

as :

𝐹𝐹 = −𝐺𝐺
𝑀𝑀𝑀𝑀
𝑟𝑟2

𝑒𝑒𝑟𝑟
𝑒𝑒𝑟𝑟 : is the radial vector from origin O.

• The gravitational force on a particle located inside a

uniform spherical shell is zero.



6.3 Kepler's Laws of Planetary Motion:

I. Law of Ellipses (1609)

The orbit of each planet is an ellipse, with the Sun located at 

one of its foci ( البؤرة  (
II. Law of Equal Areas (1609)

A line drawn between the Sun and the planet sweeps out 

equal areas in equal times as the planet orbits the Sun.

III. Harmonic Law (1618)

The square of the sidereal period الفلكیةالفترة of a planet (the time it takes a planet to complete one revolution

about the Sun relative to the stars) is directly proportional to the cube of the semi-major axis of the planet's

orbit.



6.4 Kepler's Second Law: Equal Areas:

L = r x p

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
)𝑑𝑑(𝑟𝑟 × 𝑝𝑝

𝑑𝑑𝑑𝑑
=
𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

× 𝑝𝑝 + 𝑟𝑟 ×
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

• But   𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

= 𝑣𝑣 , so the first term in right became
𝑣𝑣 × 𝑝𝑝 = 𝑣𝑣 × 𝑀𝑀𝑣𝑣 = 𝑀𝑀 𝑣𝑣 × 𝑣𝑣 = 𝑀𝑀 𝑣𝑣𝑣𝑣 𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃 =

0 𝑎𝑎𝑠𝑠 𝜃𝜃 = 0 • And 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹 from 2nd law of Newton, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟 × 𝐹𝐹 (6.4)



𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟 × 𝐹𝐹 (6.4)

• 𝑁𝑁 = 𝑟𝑟 𝑥𝑥 𝐹𝐹 : moment of force, or torque, on the 

particle about the origin of the coordinate system. 

• If r and F are collinear, this cross product vanishes and so does L(i.e. dL/dt=0), so , the 

angular momentum L, in such cases, is a constant of the motion.



Angular Momentum and Areal Velocity of a Particle 
Moving in a Central Field

L any particle 
moving in a central 
field of force

=conserved

• we first calculate the magnitude of the angular momentum of a 
particle moving in a central field.

• We use polar coordinates to describe the motion

• The velocity of the particle is

𝑣𝑣 = 𝑒𝑒𝑟𝑟�̇�𝑟 + 𝑒𝑒𝜃𝜃𝑟𝑟�̇�𝜃 In the Polar coordinates(see Chapter 1)

𝑑𝑑 = 𝑟𝑟 × 𝑝𝑝And we have :



So, the magnitude will be: 𝑑𝑑 = |𝑟𝑟 × 𝑀𝑀𝑣𝑣| 𝑑𝑑 = |𝑟𝑟𝑒𝑒𝑟𝑟 × 𝑀𝑀(𝑒𝑒𝑟𝑟�̇�𝑟 + 𝑒𝑒𝜃𝜃𝑟𝑟�̇�𝜃)|

𝑑𝑑 = 𝑀𝑀𝑟𝑟2�̇�𝜃 =constant                                                          𝒂𝒂𝒂𝒂 𝒆𝒆
𝒓𝒓

× 𝒆𝒆
𝒓𝒓

= 𝟎𝟎 𝒂𝒂𝒂𝒂𝒂𝒂 𝒆𝒆
𝒓𝒓

× 𝒆𝒆
𝜽𝜽

= 𝟏𝟏

Now, we calculate the "areal velocity," �̇�𝐴, of the particle. Figure 6.4.l(b) shows the triangular area, dA, swept out by the 
radius vector r as a planet moves a vector distance dr in a time dt along its trajectory relative to the origin of the central 
field

�𝑑𝑑𝐴𝐴 =
1
2

𝑟𝑟 × 𝑑𝑑𝑟𝑟 =
1
2

𝑟𝑟𝑒𝑒𝑟𝑟 × 𝑒𝑒𝑟𝑟𝑑𝑑𝑟𝑟 + 𝑒𝑒𝜃𝜃𝑟𝑟𝑑𝑑𝜃𝜃 =
1
2
𝑟𝑟 (𝑟𝑟𝑑𝑑𝜃𝜃)

𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= �̇�𝐴 =
1
2
𝑟𝑟2�̇�𝜃 =

𝑑𝑑
2𝑀𝑀

𝑑𝑑𝐴𝐴
𝑑𝑑𝑑𝑑

= �̇�𝐴 =
𝑑𝑑

2𝑀𝑀
= 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑑𝑑𝑎𝑎𝑠𝑠𝑑𝑑

Thus, the areal velocity, A, of a particle moving in a central field is directly proportional to its angular momentum

and, therefore, is also a constant of the motion, exactly as Kepler discovered for planets moving in the central

gravitational field of the Sun.



Let a particle be subject to an attractive central force of the from (𝑟𝑟) , where 𝑟𝑟 is the distance between the particle and the

centre of the force. Find 𝑓𝑓 (𝑟𝑟) if all circular orbits are to have identical areal velocities, �̇�𝐴.

Thus,

𝑀𝑀𝑎𝑎𝑟𝑟 = −𝑀𝑀𝑟𝑟�̇�𝜃2 = 𝑓𝑓(𝑟𝑟) × (𝒓𝒓
𝟑𝟑

𝒓𝒓𝟑𝟑
)

Example (1)

Solution:

Because the orbits are circular, the acceleration,𝑟𝑟, has no transverse component and is entirely in the radial direction. In

polar coordinates, the acceleration is given by:

𝑎𝑎 = �̈�𝑟 − 𝑟𝑟�̇�𝜃2

𝑓𝑓(𝑟𝑟) = −
𝑀𝑀𝑟𝑟4�̇�𝜃2

𝑟𝑟3
=

𝑑𝑑2

𝑀𝑀𝑟𝑟3
= 𝑓𝑓(𝑟𝑟)

,𝐴𝐴𝑠𝑠 �̇�𝐴 =
𝑑𝑑

2𝑀𝑀
𝑓𝑓 𝑟𝑟 = −

4𝑀𝑀�̇�𝐴2

𝑟𝑟3
= 𝑓𝑓(𝑟𝑟)

,𝐴𝐴𝑠𝑠 𝑑𝑑 = 𝑀𝑀𝑟𝑟 �̇�𝜃

Because the orbits are circular, the

acceleration, 𝑖𝑖. 𝑒𝑒. �̈�𝑟 = 0 ,



6.5 Kepler's First Law: The law of Ellipses :
To prove Kepler's first law, we develop a general differential equation for the orbit of a particle in any 
central, isotropic field of force. Then we solve the orbital equation for the specific case of an inverse-square 
law of force. 

The equation of motion in polar coordinates is 𝑀𝑀�̈�𝑟 = 𝑓𝑓 𝑟𝑟 𝑒𝑒𝑟𝑟
Where 𝑓𝑓(𝑟𝑟) is the central, isotropic force that acts on the particle of mass 𝑀𝑀.

acceleration vector in polar coordinates 

𝑎𝑎 = �̈�𝑟 = �̈�𝑟 − 𝑟𝑟 ̇𝜃𝜃2 𝑒𝑒𝑟𝑟 + 𝑟𝑟�̈�𝜃 + 2�̇�𝑟�̇�𝜃 𝑒𝑒𝜃𝜃
So, 

𝑀𝑀 �̈�𝑟 − 𝑟𝑟 ̇𝜃𝜃2 𝑒𝑒𝑟𝑟 = 𝑓𝑓(𝑟𝑟) m 𝑟𝑟�̈�𝜃 + 2�̇�𝑟�̇�𝜃 𝑒𝑒𝜃𝜃 = 0

No component toward θ direction



𝑀𝑀
𝑟𝑟
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑟𝑟2�̇�𝜃 = 0 𝑟𝑟2�̇�𝜃 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑑𝑑𝑎𝑎𝑠𝑠𝑑𝑑 = 𝑙𝑙Or Where 𝑙𝑙 is the angular 

momentum per unit mass:

𝑙𝑙 =
𝑑𝑑
𝑀𝑀

= 𝑟𝑟 × 𝑣𝑣

Given a certain radial force function f (r), we could, in theory, solve the pair of differential equations (Equations 6.10a and

b) to obtain 𝑟𝑟 and 𝜃𝜃 as functions of 𝑑𝑑. Often one is interested only in the path in space (the orbit) without regard to the time

𝑑𝑑. To find the equation of the orbit, we use the variable 𝒖𝒖 defined by

𝑟𝑟 = 1
𝑢𝑢

or  𝑢𝑢 = 1
𝑟𝑟

And  𝑙𝑙 = 𝑟𝑟2�̇�𝜃 = 1
𝑢𝑢2

�̇�𝜃

𝑑𝑑𝑟𝑟 = �̇�𝑟 = −1
𝑢𝑢2
�̇�𝑢 = −1

𝑢𝑢2
𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃

𝑑𝑑𝜃𝜃
𝑑𝑑𝑢𝑢

= −1
𝑢𝑢2

�̇�𝜃 𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃

= − 𝑙𝑙 𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃

m 𝒓𝒓�̈�𝜽 + 𝟐𝟐�̇�𝒓�̇�𝜽 𝒆𝒆𝜽𝜽 = 𝟎𝟎



𝑑𝑑𝑟𝑟 = �̇�𝑟 = −1
𝑢𝑢2
�̇�𝑢 = −1

𝑢𝑢2
𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃

𝑑𝑑𝜃𝜃
𝑑𝑑𝑢𝑢

= −1
𝑢𝑢2

�̇�𝜃 𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃

= − 𝑙𝑙 𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃

As we employed the fact 𝑙𝑙 = �̇�𝜃𝑢𝑢2 So the above equation can be written as:

�̇�𝑟 = − 𝑙𝑙
𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃 �̈�𝑟 = − 𝑙𝑙2𝑢𝑢2

𝑑𝑑2𝑢𝑢
𝑑𝑑𝜃𝜃2

Substituting the values found for 𝑟𝑟, �̇�𝜃, and �̈�𝑟 into Equation 6.10a, we obtain

H.W

𝑎𝑎 = �̈�𝑟 = �̈�𝑟 − 𝑟𝑟 ̇𝜃𝜃2 𝑒𝑒𝑟𝑟 + 𝑟𝑟�̈�𝜃 + 2�̇�𝑟�̇�𝜃 𝑒𝑒𝜃𝜃

𝑀𝑀 �̈�𝑟 − 𝑟𝑟 ̇𝜃𝜃2 𝑒𝑒𝑟𝑟 = 𝑓𝑓(𝑟𝑟) 𝑟𝑟�̈�𝜃 + 2�̇�𝑟�̇�𝜃 𝑒𝑒𝜃𝜃 = 0

𝑑𝑑2𝑢𝑢
𝑑𝑑𝜃𝜃2

+ 𝑢𝑢 = −
1

𝑀𝑀𝑙𝑙2𝑢𝑢2
𝑓𝑓(𝑢𝑢−1)

Differential equation of the orbit of a 

particle moving under a central force.



Example (2):
A particle in a central field moves in the spiral orbit 𝑟𝑟 = 𝑐𝑐𝜃𝜃2 Determine the force function. 

Solution: 

We have 𝑢𝑢 = 1
𝑟𝑟

= 1
𝑐𝑐𝜃𝜃2

and 𝜃𝜃 = 1
𝑐𝑐𝑢𝑢

𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃

= −
2
𝑐𝑐

1
𝜃𝜃3

𝑑𝑑2𝑢𝑢
𝑑𝑑𝜃𝜃2

= −6
𝑐𝑐
1
𝜃𝜃4

= 6 𝑐𝑐𝑢𝑢2

Now, eq. 6.17 will applied 𝑑𝑑2𝑢𝑢
𝑑𝑑𝜃𝜃2

+ 𝑢𝑢 = −
1

𝑀𝑀𝑙𝑙2𝑢𝑢2
𝑓𝑓(𝑢𝑢−1)

6 𝑐𝑐𝑢𝑢2 + 𝑢𝑢 = −
1

𝑀𝑀𝑙𝑙2𝑢𝑢2
𝑓𝑓 𝑢𝑢−1

𝑓𝑓 𝑢𝑢−1 = −𝑀𝑀𝑙𝑙2 6𝑐𝑐𝑢𝑢2 + 𝑢𝑢3
𝑓𝑓 𝑟𝑟 = −𝑀𝑀𝑙𝑙2( 6𝑐𝑐

𝑟𝑟4
+ 1

𝑟𝑟3
) as 𝑢𝑢 = 1/𝑟𝑟

Thus, the force is a combination of an inverse cube and inverse-

fourth power law
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